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ABSTRACT

The incidence vector or characteristic function of a

cyclic difference set can be viewed as a full period of a

cyclic binary sequence. These cyclic difference set

sequences possess certain desirable properties for

applications in digital communications, radar ranging and

some aspects of mathematical modeling. One particularly

desirable property unique to cyclic difference set sequences

is their two-level auto-correlation function.

In this thesis, the cross-correlation functions of a

sample of uniform cyclic difference set sequences are

investigated. The cross-correlations involve equivalent and

inequivalent uniform cyclic difference set sequences. In

addition, the span and cyclotomic cosets are determined for

each sequence in the sample.

The number of values taken on by the cross-correlation

function of two equivalent cyclic difference sets having a

period of v is shown not to exceed the number of cyclotomic

cosets modulo v. A conjecture is presented which states

that the cross-correlation function of equivalent Hadamard

quadratic residue sequences takes on three specified values.

In partial support of the conjecture it is shown that the

cross-correlation function of equivalent Hadamard quadratic

residue sequences can not assume more than three values.
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I. INTRODUCTION

To every cyclic (v,k, X )-difference set D there

corresponds a binary sequence, {si) i = 0,1,2,...,v-1,

determined by its incidence vector or characteristic

function. The characteristic function places a 1 in

position i of the v-long sequence if i is an element of the

cyclic difference set and places a 0 in position i

otherwise. The sequence {si} can be extended bi-infinitely

to form a periodic sequence of period v. We call the binary

sequences which have the same period v, uniform sequences of

period v. Certain cyclic difference set sequences possess

the pseudo-randomness properties generally described as

balance, run and two-level auto-correlation. These

properties make the cyclic difference set sequences

desirable for applications in digital communications, radar

ranging, and some aspects of mathematical modeling. One

property common to all cyclic difference set sequences is

their two-level auto-correlation function. However, not all

of these sequences are balanced or have the run property.

The maximal length linear shift register sequences

(M-sequences) are examples of cyclic difference set

sequences which have been studied extensively. In the

following sections we observe regularities in the cross-

correlation function of uniform M-sequences. In particular,

9



the number of values assumed by the cross-correlation of

uniform M-sequences of period v never exceeds Y(v), the

number of cyclotomic cosets, modulo v. When the correlation

is between an M-sequence and a cyclically shifted version of

the same sequence (auto-correlation) then the number of

values taken on is two. The cross-correlation function of

two cyclically distinct, uniform M-sequences assumes only

three values on occasion but never less than three values.

This thesis investigates the cross-correlation functions

for a sample of uniform cyclic difference set sequences.

The cross-correlations are presented along with other

distinguishing properties of the cyclic difference set

sequences. These properties include the multipliers, span

and cyclotomic cosets.
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II. CYCLIC DIFFERENCE SETS

A. DEFINITION AND EXAMPLES

A set D = {rl,r 2 ,...,rk) of k distinct residues modulo v

is a called a cyclic (v,k,X)-difference set if for every

residue a 7_ 0 (mod v) there are exactly X ordered pairs

(ri,rj) from D such that ri-rj E a(mod v). This definition

immediately imposes the following relation

k(k-l) = (v-1) (1. 1)

which must necessarily hold among the three parameters v, k

and X. This can be seen by observing that there are k(k-l)

distinct ordered pairs from D and (v-l) nonzero residues

(mod v) which must each occur X times.

The following trivial cyclic difference sets exist for

every positive integer v:

D = (v,k,X) = (v,0,0)

D = (i), 0 < i < v-1 (v,k,X) = (v,l,0)

D = {0,1,2,...,v-l} (v,k,X) = (v,v,v)

D = {0,1,2,...,i-l,i+l,...,v-l} (v,k,X) = (v,v-l,v-2).

These trivial cases are generally ignored or only treated as

limiting cases. If the additional parameter n = k-X is

ii



considered it can be shown by equation 1.1 that these

trivial cases occur if f n = 0 or n = 1. A few examples of

non-trivial cyclic difference sets are:

D = (1,3,4,5,9) (v,k,X) = (11,5,2)

D = (0,2,6,7,8,10) (v,k,X) = (11,6,3)

D = (0,1,2,4,5,8,10) (v,k,X) = (15,7,3).

B. EQUIVALENCE AND COMPLEMENTS

Let z be any integer and D = (rl,r2 ,...,rk) be a cyclic

(v,k, X)-difference set. If the set D* is formed by adding

z, modulo v, to every element of D as follows

D* = (rl+z,r2 +z,...,rk+z) = D+z (mod v)

then it should be apparent that D* is also a cyclic (v,k,X)-

difference set. D* is said to be a cyclic shift of D. If q

is an integer, relatively prime to v, then the set D**

formed by multiplying every element of D by q, modulo v, as

follows

D = (qrl,qr2 ,...,qrk) = qD (mod v)

is also a cyclic (v,k, X)-difference set. Any two cyclic

(v,k, x )-difference sets, Dk and Dj, are said to be

12



equivalent if Dk = qDj+z, modulo v, for some integers q and

z with q relatively prime to v [Ref. l:pp. 1-2].

If D is a cyclic (v,k, A )-difference set then its

complement D = {0,1,...,v-l)/D is a cyclic (v,v-k,v-2k+X)-

difference set [Ref. 1: pp. 2-3). It is usually sufficient

to consider only one of a pair of complementary cyclic

difference sets. This can be accomplished by requiring that

k be strictly less than v/2. Equation 1.1 precludes the

possibility that k is equal to v/2. Note, if k = v/2

then v - 2X± (2X)2+i by equation 1.1. Hence, if X = 0 then

v = +1 and k = +1/2 which is a contradiction. Alternative-

ly, if X is a positive integer then f(2A) 2+j is clearly

irrational and the contradiction that v is irrational

immediately follows.

C. MULTIPLIERS AND CYCLOTOMIC COSETS

If, for a given cyclic (v,k,X)-difference set D and an

integer m relatively prime to v, there exists an integer s

such that mD = D+s, modulo v, then m is called a multiplier

of the cyclic difference set D. The multipliers of D

collectively form a multiplicative group, modulo v [Ref. 2:

pp. 131-132].

Multipliers play a large role in the construction of

certain cyclic difference sets and in proving the

nonexistence of other particular types. All known cyclic

difference sets have non-trivial multipliers and it remains

an open question as to whether this must hold for all cyclic

13



difference sets [Ref. 1:pp. 7-8). The following theorem,

the "multiplier theorem", provides for the existence of

multipliers for cyclic difference sets in certain cases.

Theorem II.1

If D = (rl,r2 ,...,rk) is a cyclic (v,k, A)-

difference set and if p is a prime divisor of n = k-X

such that (p,v) = 1 and p > X, then p is a multiplier of

the cyclic difference set D.

A proof of Theorem 11.1 is provided by Hall and is beyond

the scope of this presentation [Ref. 2:pp. 132-135].

The multiplier m of a cyclic difference set can be

characterized as inducing an automorphism, r -rm (mod v) of

the underlying abelian group. This automorphism is thus a

permutation of the integers (0,1,2,...,v-1) and can be

expressed in cycle form [Ref. 3:pp. 90-91]. The cycles of

the permutation r- rm (mod v) are called cyclotomic cosets.

As an example, consider the case v = 15 and m = 2 with the

corresponding permutation JIm.

0 1 : 1012146 8 9 10 11 1:13 14iJq = 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13

This permutation of the residues, modulo 15, can be

expressed in cycle form as

14



(0), (1,2,4,8), (3,6,12,9), (5,10), (7,14,13,11)

and the corresponding sequentially indexed cyclotomic cosets

are listed as follows:

Co = (0)

C1 = (1,2,4,8)

C2 = (3,6,12,9)

C3 = (5,10)

C4 = (7,14,13,11).

D. INCIDENCE VECTORS AND AUTOCORRELATION

Associated with every cyclic (v,k,X)-difference set D is

the binary sequence (si) i = 0,1,2,...,v-1, which can be

considered as bi-infinite and periodic with a period of v.

The sequence is produced by the incidence vector or

characteristic function of the cyclic difference set

1 if i E D

s ' 0 otherwise.

For example, the binary sequence given as

01011100010

15



of length 11 is associated with the cyclic (11,5,2)-

difference set D = (1,3,4,5,9). This sequence can be

extended bi-infinitely

...0 1 0 1 1 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0...

to form the periodic cyclic difference set sequence of

period 11.

The set of periodic binary sequences can be partitioned

into distinct classes. Each class is composed of all the

periodic binary sequences which have the same period. Any

collection of sequences which are in the same class are

called uniform.

The autocorrelation function of a sequence (si) having a

period of v is given as

n-l
Cs (T) = 1 0Si T

where the subscripts are taken, modulo v. Since (si) is the

characteristic function of a cyclic difference set its

autocorrelation function is evaluated as: [Ref. l:p. 6)

T k if T : 0 (md v)

x otherwise.

16



The binary sequence (si) can be transformed to the

equivalent sequence (xi) by

xi = 1-2s i

which merely replaces the ones of (si) with negative ones

and the zeros of {si) with ones. If the sequence (xi) is

correlated against its cyclic shifts (xi+t), where T 1 0,

modulo v, the value (-1--1) is obtained exactly X times,

(-1"1) and (1-1) are each obtained k-X times and (1"1) is

obtained the remaining v-2(k- )-X times (Ref. 4:p. 59). The

following example illustrates this evaluation:

D = (1,2,4) (v,k,X) = (7,3,1)

(xi) = 1-1-1 1-1 1 1

(xi+l) = -i -i 1 -1 1 1 1

{xi+2) = -1 1 -1 1 1 1 -1

(xi+3) = 1 -1 1 1 1 -l -l

(xi+4) = -1 1 1 1 -1 -l 1

(xi+5) = 1 1 1-1-1 1-1

(xi+6) = 1 1 -1 -1 1 -1 1.

Correlating (xi ) against (xi+3), we obtain the value (-1-1)

exactly once, (-1-1) and (1-1) two times each and (1-1) the

remaining two times. If (xi) is correlated against itself,

the value (-1-i) is obtained exactly k times and (i'i) is

17



obtained the remaining v-k times. The autocorrelation

function of (xi) is given as

Cy(T) 
v 

if T E 0 (mod v)

i v-4 (k- X) otherwise.

This type of autocorrelation function is said to be two-

level. The cyclic difference set sequences are the only

binary sequences which possess two-level autocorrelation

functions [Ref. l:p. 7].

E. SPECIAL TYPES OF CYCLIC DIFFERENCE SETS

The cyclic (v,k, X )-difference sets are generally

classified by some relationship that exists among the

parameters v, k, A and n. The parameters v and n are

generally viewed as the most fundamental of the four. Given

a cyclic (v,k, X)-difference set D and its complement D with

parameters (v,k,X ) = (v,v-k,v-2k+ X), it follows from

equation (1.1) that

k'k = k(v-k) = n(v-l)

A'X = (v-2k+X) = n(n-l).

Noting that A + A = v-2n and requiring X > 1 for non-trivial

cyclic difference sets, it then follows that

18



(v-2n)2/4 > A-A = n(n-1) Z v-2n-1

hence,

n2+n+l > v > 4n-1. (2.1)

The parameters of all cyclic (v,k, X)-difference sets are

constrained by equation 2.1. (Ref. l:p. 3].

Certain types of cyclic (v,k, A )-difference sets have

been investigated to a greater extent than others. These

types or classes are characterized by special relationships

that exist among the parameters v, k, A and n in addition to

equation (2.1). For example, the Hadamard cyclic difference

sets have parameters v = 4t-l, k = 2t-1, and A = t-1 for

some positive integer t. Cyclic difference sets are also

categorized into families if the common property among them

is of a constructive nature. These categories serve to

identify and distinguish inequivalent cyclic difference sets

which have identical parameters of v, k and ' The

following three sections describe some of the ca4 ies

that are more commonly encountered.

1. Planar .yM

The cyclic difference sets that correspond to finite

cyclic projective planes with X = 1 are described as being

planar or simple. An extensive treatment of finite

projective geometries can be found in Lidl and Neiderreiter

19



[Ref. 5:pp. 496-508) and Coxeter [Ref. 6:pp. 229-262].

Planar cyclic difference sets are known to exist with

parameters v = p2j+pJ+l, k = pJ+i and X = 1 for all prime

powers p] = n. Note, p is a multiplier of such cyclic

difference sets for all positive integers k by the

Multiplier Theorem II.1. All known planar cyclic difference

sets are in the Singer family which are related to finite

projective geometries, and have parameters

v = (q(N+l)-l)/(q-l), k = (qN-.l)/(q-l), X = (q(N-l)-l)/(q-l)

where N > 1 and q is a prime power [Ref. 1:pp. 77-78,99].

Since n = k-X = (qN-q(N-1))/(q-l), qN-1 is a multiplier of

all such cyclic difference sets. A few examples of planar

cyclic difference sets are provided as follows:

D1  = (1,2,4) (v,k,X) = (7,3,1)

D2 = (0,1,3,9) (v,k,A) = (13,4,1)

D3 = (3,6,7,12,14) (v,k,X) = (21,5,1)

D4 = (1,5,11,24,25,27) (v,k,X) = (31,6,1)

with multipliers 2t1 , 3t2  2 t 3 and 5t4 for positive integers

t1 , t2 , t3 and t4 , respectively.

2. Hadamard Type

The Hadamard cyclic difference sets are

characterized by possessing parameters (v,k,A) of the form

20



v = 4t-l, k = 2t-1 and A = t-l. The Hadamard cyclic

difference sets share a common characteristic with the

planar cyclic difference sets in that they both possess the

extreme values of A [Ref. l:pp. 90-91). This is seen by

requiring k < v/2 as usual, so that I - A (v-3)/4. All

known Hadamard cyclic difference sets can be categorized

according to the value of v as follows:

(i) v = 2j-1, j > 2

(ii) v = 4t-l, v is prime

(iii) v = 4t-1 = 4x2 +27, v is prime

(iv) v = p(p+2), p and p+2 are both prime.

Since n = t > X = t-l, t is a multiplier whenever t is

prime.

The cyclic difference sets in category (i) are

included in the Singer family which means that there exists

an explicit method for their construction [Ref. l:pp. 99-

119]. Those in category (ii) include the quadratic

residues, modulo v, among others. The cyclic difference

sets in category (iii) are called Hall cyclic difference

sets and those in category (iv) are called the twin prime

cyclic difference sets.

It does happen that inequivalent Hadamard type

cyclic difference sets with identical parameters v, k and X

belong to more than one category. This, of course, implies

21



an overlap of the categories exists. In particular, the

following overlaps are listed [Ref. l:pp. 90-91):

(a) (i) and (ii) overlap iff v is a Mersenne prime

(b) (i) and (iii) overlap iff v = 31 or 127 or 131071

(c) (i) and (iv) overlap iff v = 15.

Some Hadamard type cyclic difference sets are given in the

following examples:

D1 = (1,2,4)

(v,k,X) = (7,3,1); categories (i) & (iii)

D2 = (1,3,4,5,9)

(v,k,X) = (11,5,2); category (ii)

D3 = (1,2,3,4,6,8,12,15,16,17,23,24,27,29,30)

(v,k,x)=(31,15,7); categories (i) & (iii)

D4 = (0,1,2,4,5,8,10)

(v,k,X) = (15,7,3); category (iv).

3. Nth Power Residue Type

A cyclic (v,k, X)-difference set whose elements are

the Nth powers, modulo v, where v is a prime is called an

Nth power residue cyclic difference set. If zero is added

22
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to this set the resulting set is called a modified Nth power

residue cyclic difference set. The quadratic residue cyclic

difference sets are a well known class of Nth power cyclic

difference sets which are also of the Hadamard type.

Theorem 11.2 describes the existence of quadratic residue

cyclic difference sets of the Hadamard type when v = 4t-1

for some positive integer t.

Theorem 11.2

If v = 4t-1 is a prime, the quadratic residues,

modulo v, form a cyclic difference set with parameters

(v,k,X) = (4t-l,2t-l,t-l).

Baumert [Ref. l:p. 119] provides a complete proof of this

theorem.

Recall that an integer a 1 0, modulo p, where p is

an odd prime, is called a quadratic residue, modulo p, if

the congruence x2 = a (mod p) has a solution x (mod p).

Otherwise, a is called a quadratic non-residue, modulo p.

An example of a quadratic residue cyclic difference set is

D = (1,4,5,6,7,9,11,16,17) (v,k,X) = (19,9,4).

The congruences x2 (mod 19) are:

23



12 1, 182 1, 42 16, 152 16, 72 1 11, 122 ii

22 E 4, 172 E 4, 52 E 6, 142 H 6, 82 E 7, 112 7
32 9, 162 H 9, 62 E 17, 132 E 17, 92 E 5, 102 5.

Clearly, if x2 E a (nod p) then (p-x)2 = a (mod p) since

(p-x)2 = p2 -2px+x2 = x2 (mod p).

Therefore, the congruences x2  (mod p) need only be

determined for the residues x = l,2,...,(p-I)/2.

The following theorem identifies the multipliers for

all Nth power cyclic difference sets.

Theorem 11.3

The Nth power residues themselves are the only

multipliers of a non-trivial Nth power residue

cyclic difference set.

A proof of Theorem 11.3 is given by Baumert [Ref. 1:pp. 125-

126].

A full treatment on the classification and

construction of cyclic difference sets can be found in

Baumert [Ref. 1] and Hall [Ref. 2:pp. 120-166].

F. CYCLIC DIFFERENCE SET SEQUENCES

The discussion so far has focused primarily on cyclic

difference sets. In Section II.D it was shown that a binary

24



sequence can be associated with each cyclic difference set

by means of its incidence vector or characteristic function.

These cyclic difference set sequences are the only binary

sequences which possess a two-level auto-correlation

function. The two-level auto-correlation function makes

them useful for applications in digital communications and

radar ranging.

The remainder of this thesis deals specifically with

cyclic difference set sequences which are extended

periodically. The period of each cyclic difference set

sequence is, of course, v. These sequences are identified

by their associated cyclic differences sets. The general

properties of all cyclic difference sets such as their

multipliers, shifts and cyclotomic cosets carry over in a

natural way to their associated cyclic sequences.

A cyclic differenc'e set D can be transformed to an

equivalent cyclic difference set D* by forming the product

dD, modulo v, where d is a multiplier of D. In a similar

fashion, the periodic binary sequence (si) associated with D

can be transformed to an equivalent cyclically shifted

version {Sdi) by taking every dth element, modulo v, from

fsi}. This process is called decimation. Hence, if {si} is

decimated by any element d from its associated multiplier

group, then (Sdi) = (si+T) for some integer T. There exists

a particular shift of (si) for which a decimation by any of

its multipliers results in an identical sequence so that
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(Sdi) = (si). In this case (si) is said to be in its

characteristic shift.

The cyclotomic cosets of a cyclic difference set

sequence are determined by its associated multiplier group

G. These cosets are constructed by forming the products rG

(mod v) where r is an arbitrary residue, modulo v. The

cyclotomic cosets are intimately connected with the

structure of their corresponding cyclic difference set

sequences. For instance, if the cyclic difference set

sequence (si) is in its characteristic shift, then the

values observed in all the positions of the sequence which

lie in any particular cyclotomic coset of (si) will be

identical. This property of cyclic difference set sequences

is described as being "constant on cosets" for obvious

reasons.

The "constant on cosets" property can be exploited to

construct cyclic difference sets and their associated

sequences. For a given modulus v, the cyclotomic cosets of

each non-trivial multiplier d can be constructed, then all

possible combinations of the cosets are selected and their

elements are combined into a set of cardinality k. This set

is then tested to determine if the requirements for a cyclic

(v,k,X )-difference set are met, i.e. if each non-zero

difference a occurs exactly X times.
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III. MAXIMAL LENGTH LINEAR SHIFT REGISTER SEOUENCES

A. LINEAR SHIFT REGISTER SEQUENCES

The cyclic difference set sequences include a special

type of periodic binary sequences known as maximal length

linear shift register sequences (M-sequences). A general

(nonlinear) shift register of span n is an electronic device

consisting of n sequentially connected binary storage units.

At regular intervals the contents of each unit is shifted

down the line into the next storage unit. During this shift

a feedback term is computed from the contents of the n units

and fed back into the first storage unit. The feedback term

is determined by a feedback function which, in general, is

not a linear combination of the values in the n storage

units. Figure III.1 shows the general block diagram of a

general (nonlinear) shift register with feedback.

f-XI--Ii 3 ---- X

Figure III.1 General Shift Register with Feedback.
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The behavior of the shift register can be described as a

mapping from a binary n-tuple space to itself which is

invoked at regular intervals. The mapping is depicted as

(Xl,X2,...,Xn) - (f(xl,...,Xn),Xl,X2,...,Xnl).

The actual output of the shift register can be taken as the

binary sequence generated from the history of any particular

storage unit or as the sequential progression of the binary

n-tuples themselves.

A linear shift register of span n generates a sequence

of elements (si) from the finite field F = GF(2). The

elements of (si) satisfy an nth order linear recurrence

relation over F of the form

st = alst.l+a2st_2+...+anstn (3.1)

where the coefficients al,a 2 ,...,an are fixed elements of F

and an 4 0. The characteristic polynomial of the linear

recurrence relation defined by equation (3.1) is defined as

c(x) = xn-alxn-l-a2xn - 2 - . . .- a
n .

The elements of an M-sequence satisfy an nth order

linear recurrence relation over F = GF(2) whose

characteristic polynomial c(x) is primitive, i.e. c(x) is an
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nth degree irreducible polynomial over F = GF(2) which is

the minimal polynomial of a primitive root c in E = GF(2n).

This means that a generates the multiplicative group of non-

zero elements in E = GF(2n) and that c(x) is the unique

monic irreducible nth degree polynomial in F[x] for which

c(a) = 0. For example, one period of an M-sequence having a

period of v = 7 is

{Sk) = 1 0 0 1 1 1 0.

The elements of this M-sequence satisfy the 3rd order linear

recurrence relation

st = Stl+St_3

which has the characteristic polynomial

c(x) = x3-x 2 -L

The shift register configured as in Figure III.1 that

generates {Sk) has corresponding feedback function

f(xl,x 2 ,x3 ) = xl+x 3.

where the sum of x, and x3 is reduced modulo 2.
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B. PSEUDO-RANDOMNESS PROPERTIES

Every M-sequence of period v = 2n-1 satisfies three

basic pseudo-randomness properties [Ref. 4:p. 10]. These

properties make it appear that the elements of an M-sequence

are determined entirely by a random process. However, M-

sequences are deterministic and not random. Therefore, the

three properties are said to be pseudo-random. They are

listed as follows:

(i) Balance Property. There are 2n-1 ones and 2n-1-1

zeros in every period.

(ii) Run Property. There are 2n-2- i runs of ones and

2n-2-i runs of zeros of length i, for 1 < i < n-2,

plus a single run of n-i zeros and a single run of

n ones in each period.

(iii) Correlation Property. The autocorrelation

function takes on the value v = 2n-1 if j = 0 (mod

v) and -1 otherwise.

Note that the correlation property essentially states

that M-sequences have a two-level autocorrelation function.

Hence, every M-sequence represents the incidence vector of a

cyclic difference set. It can be shown that this cyclic

difference set has parameters (v,k, A) = (2n-1,2n-l, 2n-2)
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(Ref. 7:p. 730]. M-sequences also have the additional

property that all 2n-1 subsequences of length n in the

sequence are distinct [Ref. 3:pp. 152-153].

C. M-SEQUENCE MULTIPLIERS AND CYCLOTOMIC COSETS

Since it has been determined that an M-sequence

represents the incidence vector of a cyclic difference set,

the question of identifying its associated multipliers

naturally arises. The following theorem identifies the

multipliers of all M-sequences.

Theorem III.1

If {Sk) is a maximal length linear shift register

sequence of degree n, then (Sqk ) is equivalent to a

cyclically shifted version of {Sk} iff

q = 1,2,22,...,2n-.

Golomb [Ref. 8:p. 76] provides a proof of Theorem III.1.

Note that the multipliers which exist for M-sequences are

not guaranteed by the Multiplier Theorem II.1.

The multiplier group of all M-sequences with a period of

v = 2n-1 is the group G = (1,2 ,22,..., 2n). The cyclotomic

cosets of an M-sequence can be created by choosing each

residue r, modulo v, and forming the sets

Gr = {r,2r,22r,...,2n-lr) (mod v).
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The number of cyclotomic cosets for an M-sequence having

period v = 2n-1, is given by [Ref. 8:pp. 77-78) as

n
Y(v) = 1/n j ( 2 (in)-l]

i=1

where (i,n) is the greatest common divisor of i and n. For

the case n = 3, the Y(7) = 3 cyclotomic cosets are:

Co = (0)

C1 = (1,2,4)

C2 = (3,6,5).

D. DECIMATION

Given a sequence (Sk) and any integer d k 1, the

sequence formed by taking every dth term, modulo v, from

(Sk) is called the dth decimation of (Sk). The following

examples illustrate some of the decimations of a given M-

sequence with period v = 15:

(Sk) = 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0

(S2k) - 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0

(84k) = 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1

(88k) = 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1

(S16k) = 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0.
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There are three cyclically shifted versions of {sk)

which have particularly interesting decimations. Let (sk+T}

be the sequence obtained by cyclically shifting (sk) byr

positions to the left, then the three cyclic shifts of (sk)

and their decimations are:

(sk+14) = 0 111 1 010 11 0 010 0

(s2(k+14)) = 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0

(sk+4) = 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1

(s2(k+4)) = 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1

(s4(k+4)) = 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1

(sk+9) = 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1

(s2(k+9)) = 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1

(s4(k+9)) = 0 010 00 11 11 0 101 1.

The following points should be observed:

Mi (sk+14) = {s2(k+14))

(ii) (sk+4) = {s2(kI9)), {sk+9) = (s2(k+4))

(iii) (sk+4) = (s4(k+4))' {sk+9) = (4k9)

Other decimations of (sk) by 3, 5 and 7 are:
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(S3k} = 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0

(S5k) = 1 1 01 1 0 1 1 01 1 0 1 1 0

(s7k) = 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1.

Theorem III.1 states that (Sqk} is equivalent to a

cyclically shifted version of {Sk} only for q = 1,2,...,2 n- 1

and this is demonstrated in the example involving the

decimations of (Sk) by elements in the multiplier group.

The sequence (Sk+14) is the characteristic shift of (Sk}

since (Sk+14) = (S2(k+14)}. In the examples involving the

decimations of (Sk) by 3 and 5 the resulting sequences have

periods which are less than 15. This short cycling occurs

due to the fact that 3 and 5 are not relatively prime to 15.

The following corollary pertains directly to the last

example involving the 7th decimation of (sk).

Corollary 111.2

Any M-sequence with period v = 2n-, can be derived

from any other M-sequence having the same period v by a

suitable decimation.

McEliece [Ref. 3:p. 163) provides a complete proof of

corollary 111.2.

There are only two cyclically distinct M-sequences

having period v = 15. The 7th decimation of the M-sequence

(sk) results in the only other cyclically inequivalent M-
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sequence having period v = 15. It should he noted that the

decimation of {Sk) by any two numbers which are in the same

cyclotomic coset result in cyclically shifted versions of

the same sequence. This means that the decimation of (Sk)

by 14, 13 and 11 results in cyclically shifted versions of

(S7k) = 1 1 0 0 0 1 0 0 1 1 0 1 0 11

which is seen in the following decimations:

{Sl4k) = 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

(Sl3k) = 1 0 1 0 1 1 1 1 0 0 0 1 0 0 1

(Sl1k} = 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0.

E. TRACE

The concept of trace in a finite field E = GF(qn) is a

particularly useful tool in the analysis of M-sequences.

The trace of a E E= GF(qn) over the subfield F = GF(q) is

defined as

E 2 3 n-i
TrF(a) = a+aq+aq +q +.. .-,q .

E
If F is the prime subfield of E then TrF(a) is called the

absolute trace of a and is denoted by Tr(a). The term trace

will denote the absolute trace unless otherwise specified.
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The trace of a E E = GF(qn) over F = GF(q) is the sum of

the conjugates of a with respect to F (Ref. 5:pp. 54-55].

The following theorem gives some of the properties of the

trace function.

Theorem 111.3

If a, E E = GF(qn) and p E F = GF(q), then

(a) Tr (a)E F

(b) Tr(a+8) = Tr(a)+Tr(a)

(c) Tr(pa) = pTr(a)

(d) Tr(cq) = Tr(a)

(e) Tr maps E onto F.

McEliece (Ref. 3:p. 99] provides a proof of theorem 111.3.

Simply stated, the trace function is a linear transformation

from E = GF(qn) onto F = GF(q).

As an example, let E = GF(2 4 ) and F = GF(2) with E

defined over F by the characteristic polynomial

C(X) = x 4 -x-i (3.2)

Let a be a primitive root of the characteristic polynomial

c(x) defined by equation 3.2 so that

4 = +1. (3.3)
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The elements ci of the multiplicative group of non-zero

elements in E = GF(24 ) can then be generated using equation

3.3. The non-zero elements of E = GF(2 4 ) and their trace

values are listed in Table III.l.

Since every element of E = GF(24 ) can be expressed as a

linear combination of U 0, al 1 ,  and a3, the formal

calculation of the trace need only be made for these

particular elements as follows:

Tr(a 0 ) = 1+12+14+18 = 0

Tr(aeI ) = cL+a 2 +L4+a 8 =a+O2 +(al)+(a 2 +l) = 0

Tr(a 3 ) = , 3+j6+(jl 2 +(j9 = a3+()3+a 2 )+(a 3 +a 2 +a+l)+(a3 +a) = 1

Theorem 111.3 is then utilized to calculate the trace of the

remaining elements of E. For example, the trace of a11 is

Tr(a I I ) = Tr(a3+a 2 +a) = Tr(a3)+Tr(a 2 )+Tr(a) = 1+0+0 = 1.

The characteristic shift of an M-sequence having period

V = 2n-1 and characteristic polynomial c(x) can be

constructed by means of the trace function as follows [Ref.

3:pp. 160-161]:

I Tr(OL0 ) , T r ( (eI ),Tr(u 2 ) , . . . , T r (a v - 2 ) , T r ( av - l ) .
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TABLE 111.1

NON-ZERO ELEMENTS OF E = GF(24 )

ot Tr(aI.

a0  = Tr(cz0 ) = 0

ct1=O Tr (Oa) = 0

o2 = ot2 Tr(ct2 ) = 0

ca 3 = 3  Tr (ai3) = 1

ct = a +1 Tr(ai4 ) = 0

ct= cg2+ai Tr ((x 5 ) = 0

a6 =a 3+(12  Tr ((c6 ) = 1

at7  = ci.c +i~ Tr (cct7 ) = 1

al8  = ai2+1 Tr ((x 8 ) = 0

aL9  = a3 e-x Tr(a9 ) = 1

aY1 0 = ot 2+ a+l Tr (c 1 0 ) = 0

a11l = aL3 +ax2 + Tr (aL1 1 ) = 1

OL12 =a 3+i.2 eci+1 Tr(cz12 ) = 1

a1 3 = a3 + 2 +i Tr(i.13) = 1

1 4 = 3+1 Ta 14 ) = 1
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The element a is the primitive root of c(x) which determines

the multiplicative group of the finite field E = GF(2n).

Hence, the sequence

(si) = 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

where the elements of (si) are determined by

si  = Tr(
i ) i = 0,1,2,...,14

is the characteristic shift of the M-sequence defined by the

characteristic polynomial

c(x) = x4 -x-l

Theorem 111.3 gives the relationship of the trace

function among all the elements a k in E = GF(2n) whose

exponents k are in a particular cyclotomic coset of the M-

sequence determined by the characteristic polynomial c(x) of

E. The cyclotomic cosets of an M-sequence, determined by a

characteristic polynomial c(x) and having a period of v, are

formed from the cycles of the permutation i -2i (mod v) by

Theorem III.1. Clearly, all the elements of a particular

cyclotomic coset are of the form 2 ki (mod v). Now by

Theorem 111.3, Tr(ci) = Tr(( ai) 2 ) for a i c E = GF(2n)

defined by c(x) which implies that
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Tr( ai) = Tr(( i ) 2 ) = ... = Tr((c i)2k) = Tr(cci 2 k).

Therefore, Tr( wi) = Tr(ccJ) if i and j are elements of the

same cyclotomic coset. This essentially means that the

conjugates of ai in E, relative to F = GF(2), all have the

same trace value.

F. SHIFT AND ADD PROPERTY

M-sequences also satisfy the shift and add property

which is given in the following theorem.

Theorem 111.4

Let {Sk} be an M-sequence with period v = 2nl.

Then for any integer T t 0, modulo v, there exists a

unique integer a, with I < a : v-1 such that

{Sk)+(Sk+T} = {Sk+c)-

The sequences are added component-wise modulo 2.

McEliece (Ref. 3:pp. 159-160] provides a proof of theorem

111.4. The sequences {Sk+T ) and {Sk+G) are called a shift

and add pair. The following example illustrates this

important property:
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{Sk} = 0 0 1 0 1 1 1

(Sk+4) = 1 1 1 0 0 1 0

(Sk+5) = 1 1 0 0 1 0 1

Clearly,

(Sk}+{Sk+4) = {Sk+5)

and this relationship holds for any cyclically shifted

version of {Sk). The sequences (sk+4) and (Sk+5) are a

shift and add pair and the numbers 4 and 5 are also referred

to as a shift and add pair relative to (Sk). The shift and

add property applies in a similar fashion to the non-zero

elements in the multiplicative group of E = GF(2n). The

finite field E is determined by the characteristic

polynomial of the associated M-sequence. Let a k be an

element in the multiplicative group of non-zero elements in

E -GF(2n) then the shift and add property provides that

+k+ T k+

for a unique pair of integers T and a modulo v = 2n-l, i.e.

the elements akK and k+a are a shift and add pair.

The values that occupy the positions of a shift and add

pair in an M-sequence are related by the following theorem.
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Theorem 111.5

if ai and ai are a shift and add pair in E = GF(2n)

defined by the characteristic polynomial c(x), then

(a) Tr(cti+t) = Tr(ctj+t) iff Tr(cxt) = 0

(b) Tr(cti+t) 6 Tr(aj4 t) iff Tr(ctt) = 1

where a E E.

Proof:

Since ai and a) are a shift and add pair, this

implies that

a l+t + (x +t a t.

By Theorem 111.3

Tr(cti+t+ct)+t) = Tr(axi+t)+Tr(a)j+t) = Tr(cxt).

Clearly,

Tr(ai+t) = Tr(aj+t) iff Tr(aXt) =0

Tr(axi+t)30 Tr(c3+t) iff Tr(ctt) =1.

Theorem 111.5 implies that for an M-sequence in a particular

cyclic shift relative to the characteristic shift, the

values that occupy the positions of a shift and add pair
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depend upon the value of the sequence bit in the initial

position. For example, the sequence (sk) generated by the

characteristic polynomial defined by equation (3.2) is

(Sk) = 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0.

The positions of (sk) are indexed by 0,1,2,..,14. The

associated shift and add pairs (i,j) for the sequence (Sk)

are determined by Table III1. and provided in the following

list:

(1,4) (3,14) (6,13) (12,11)

(2,8) (5,10) (9,7)

The value in the initial position of (sk} is 0. Therefore

the values that occupy positions of any shift and add pair

in {Sk) must be identical as observed. If (sk) is

cyclically shifted by 1 to obtain

(Sk+l) = 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0

then the initial position of (Sk+l} has a value of 1.

Consequently, the values that occupy corresponding positions

of any shift and add pair must necessarily be unequal, i.e.,

they are binary complements. For instance, the values
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occupying the corresponding positions of the shift and add

pair (3,14) are 1 and 0 respectively.

G. REGULARITIES IN CROSS-CORRELATION

Given two uniform M-sequences (ak) and (bk) with a

period of v, the cross-correlation function is defined as

v
C(r) = akb+

L kbk+Tr
k=l

In the case (ak) = (bk+T ), then the cross-correlation

function is the auto-correlation function Ca(T ) of {ak) as

defined earlier. The auto-correlation function will have

exactly two values. The number of values taken on by the

cross-correlation of two cyclically distinct uniform M-

sequences will take on at least three values. The only

general statement that can be made about the cross-

correlation of two M-sequences is given by the following

theorem.

Theorem 111.6

The number of distinct values assumed by the cross-

correlation function C(-r) of two M-sequences, (ak) and

{bk), both having a period of v, can never exceed Y(v),

the number of cyclotomic cosets, modulo v.

Proof:

The proof is reproduced from Golomb (Ref. 8: p.

82]. Without loss of generality, let (ak) and {bk) be
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in their characteristic shifts. Now by corollary

111.2

(aqk) = (bk)

for some q, with (q,v) = 1. Hence,

v v

C(T) I akbk+T = I akaqk+T
k=1 k=l

By the formula of Gauss for the multiplication of

cyclotomic cosets, the value of C(T) depends only on the

coset to which T belongs. Therefore the number of

different values assumed by C(T) can not exceed Y(v),

the number of distinct cyclotomic cosets, modulo v.

It is observed that certain regularities exist other

than the one indicated by Theorem 111.6. In fact it happens

on occasion that the cross-correlation function of

cyclically distinct M-sequences assumes only three values,

which is the minimum number possible. C(t) also takes on

the values of sequential integers in certain cases. The

following examples show these particular regularities:

(ak) = 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 10 1

010000
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{bk) = 1 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0

001011

C(T)E(6,8,10}, v = 31, Y(31) = 7, (bk) = {a5k)

(ak) = 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1

010000

(bk) = 1 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0

110111

C(T)E(6,7,8,9,10,II), Y(31) = 7, (bk) = (a30k}

The following theorems explicitly determine the cross-

correlation function of uniform M-sequences in certain

restricted cases. These theorems are presented without

proof. A list of references which contain various parts of

the proofs of these composite results can be found in

Sarwate and Pursley [Ref. 9:p. 6033.

Theorem 111.7

Let (ai} and (bi) be uniform M-sequences having a

period of 2n-1 with (bi) = (aqi), where either q = 2k+l

or q = 22k-2k+I. If e = gcd(n,k) is such that n/e

is odd, then the cross-correlation function of

(ai) and (bi) is three-valued and

-l+2((n+e)/2) occurs 2 (n-e-1)+2 ((n-e-2)/2) times,

-1 occurs 2n-2 (n-e)-i times and

-1-2(n+e) occurs 2 (n-e-1)- 2 ((n-e-2)/2) times.
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Theorem 111.7 applies to the previous example involving the

cross-correlation of the M-sequences having a period of 31

where

(ai) = 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1

010000

and

(bi) = 1 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0

0 0 1 0 1 1.

These sequences are transformed to their corresponding

sequences of l's and -l's as described in Section II.D and

their cross-correlation function is evaluated.

(xi) = -1 1 1 -1 1 -1 -1 1 1 -1 -1 -1 -1 -1 1 1

1 -1 -1 1 -1 -1 -1 1 -1 1 -1 1 1 1 1

(x*i) = -1 -1 -1 1 -1 -1 1 1 -1 -1 -1 1 1 1 1 -1

-i 1 -1 1 -1 1 1 -I 1 1 1 -1 1-1 -1.

In this case n = 5, k = 2, and q = 13 so that (ai} = {b1 3 i)

except for a cyclic shift. Clearly, e = gcd(5,2) = 1 and

5/1 = 5 is odd, hence
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3 occurs 10 times,

-1 occurs 15 times and

-9 occurs 6 times

as actually observed in the computation of C(T). A pair of

M-sequences which have a three-valued cross-correlation

function is called a "preferred" pair.

Theorem 111.8

Let (ai) and (bi) denote M-sequences of period 2n-1

where n is a multiple of 4. If (ai) = (bt(n)i) with

t(n) = 2((n+2)/2)-i

then the cross-correlation function of (ai) and (bi) is

four-valued and

-1+2((n+2)/2) occurs (2 (n-l)-2 ((n-2)/2))/ 3 times,

-1+2(n/ 2 )  occurs 2 (n/2) times,

-1 occurs 2 (n-l)-2 ((n-2)/2)-I times and

-1-2(n/2) occurs (2n - 2 (n/2))/ 3 times.

Theorem 111.8 applies to the following example of the cross-

correlation function of M-sequences having a period of 15

with
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{ai} = 1 1 1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -l

and

(bi) = 1 1 1 -1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1.

For this example n = 4, t(4) = 7 and (ai} = (b7i}, therefore

7 occurs 2 times,

3 occurs 4 times,

-1 occurs 5 times and

-5 occurs 4 times

which agrees with the actual computation of C(T).

Theorems 111.7 and 111.8 indicate when the number of

values assumed by the cross-correlation function of two

cyclically distinct M-sequences is minimal or near minimal.

However, the upper bound on the number of cross-correlation

values does not appear to be approached unless {ai) and (bi)

are reverse sequences, i.e., (ai) is a cyclically shifted

version of (bi) in reverse order [Ref. 8:pp. 82-85].
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IV. METHODOLQGy

A. PROCEDURE

This investigation focuses on the

functions involving a sample of uniform

set sequences generated from a list of

sets provided by Baumert [Ref. l:pp. 150

containing the 85 cyclic difference sets

includes the multipliers and classificatic

difference set. The cross-correlations a

three different categories and each cat

individually as discussed in the following

Only one cyclic difference set sec

complementary pair is necessary for the

investigation. This is seen by noting t

cyclic difference set sequence composed

then the associated complementary sequence

from {ak} by changing the 1's to -l's and v:

(a -) = (-ak). The cross-correlation funct

uniform sequences (ak} and (bk} having a per

v

C(T) = akbk+,
k=l
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where the subscripts are taken modulo v. The cross-

correlation function of the complementary sequence (ak and

the sequence (bk) is

V V V

C(T) = -..akbk+T = -akbk+T I akbk+ T
k=l k=l k=l

Hence, the cross-correlation function of (ak) and {bk} is

the negative of C(T) for tak) and {bk).

Table IV.l identifies the 39 cyclic difference sets

used to construct the sample of cyclic difference set

sequences. The classifications and multipliers are also

provided for each cyclic difference set in the table.

The cyclic difference sets with identical parameters are

distinguished by the letters A, B, C, ..., etc. The

following classification codes are defined as:

Sn - Hyperplanes in Projective n Space

L - Quadratic Residues

TP - Twin Prime Sets

H - Hall's Sets

GMW - Gordon, Mills, Welch

* - No Special Category Applies

A complete enumeration of the elements of each cyclic

difference set in Table IV.l is listed in Appendix A.
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TABLE IV.1

SAMPLE CYCLIC DIFFERENCE SETS

(v~.A)CLASSIFICATION M4ULTIPLIER

(7,3,1) S2,L 2
(11,5,2) L 3
(15,7,3) S3,TP 2
(19,9,4) L 5
(21,5,1) S2 2
(23,11,5) L 2
(31,6,1) S2 5
(31A,15,7) S4,H 2
(31B,15,7) L 2
(35,17,8) TP 3
(40,13,4) S3 3
(43A,21,10) H 11
(43B,21,10) L 11
(47,23,11) L 2
(57,8,1) S2 7
(59,29,14) L 3
(63A,31,15) S5 2
(63B,31,15) GMW 2
(67,33,16) L 17
(71,35,17) L 2
(79,39,19) L 2
(83,41,20) L 3
(85,21,5) S3 2
(91,10,1) S2 3
(103,51,25) L 2
(107,53,26) L 3
(121A,40,13) S4 3
(121B,40,13) *3

(121C,40,13) *3

(121D,40,13) *i

(127A,63,31) L 2
(127B, 63,31) H 2
(127C,63,31) S6 2
(127D,63,31) *2

(127E,63,31) *2

(127F, 63, 31) *2

(131,65,32) L 3
(133,12,1) S2 11
(133,33,S) *5
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1. Sample Construction

The sample of 39 cyclic difference sets is derived

from the list of cyclic difference sets provided by Baumert.

The corresponding cyclic difference set sequences are

generated by the characteristic function of each cyclic

difference set. - These cyclic difference set sequences (sk)

of O's and l's are then transformed into sequences {xk) of

l's and -l's by

xk = l-2s k .

The cross-correlation functions are evaluated using these

sequences of l's and -1's.

2. Span

The span of a periodic binary sequence (Sk) is

defined as the smallest positive integer n such that all

* subsequences of length n in (Sk} are unique. The span of

each cyclic difference set sequence in the sample is

determined by an exhaustive computer search and is provided

in Appendix A.

B. CYCLOTOMIC COSETS AND EQUIVALENT SEQUENCES

The multipliers of the cyclic difference set sequences

with period v are used to construct the associated

cyclotomic cosets, modulo v, for each sequence in the

sample. The multiplier group G is formed from the

multipliers of each sequence. The cosets are determined by
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forming the products rG (mod v) where r is an arbitrary

residue, modulo v, as noted in Section II.F.

The cosets described above are utilized to obtain the

equivalent sequences of a given cyclic difference set

sequence {ak). Recall that two cyclic (v,k, X)-difference

sets Dk and Dj are said to be equivalent if Dk = qDj+z for

some integers q and z with q relatively prime to v.

Analogously, two uniform cyclic difference set sequences

{ak) and {bk) having a period of v are said to be equivalent

if (ak) = {bqk+z} for some integers q and z with q

relatively prime to v. Consequently, all the cyclic

difference set sequences equivalent to the cyclic difference

set sequence (bk) are obtained by properly decimating (bk).

A proper decimation is defined as a decimation by an integer

relatively prime to v.

Decimating any cyclic difference set sequence by

integers which are in the same cyclotomic coset results in

cyclically shifted versions of the same sequence. Without

loss of generality, only one cyclic difference set sequence

from each class of coset decimations are considered.

Therefore, a sequence (bk) need only be decimated by one

representative element from each coset containing integers

which are relatively prime to v. This produces one each of

the sequences equivalent to (bk), none of which are cyclic

shifts of any another.
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The cyclotomic cosets associated with each sequence in

the sample are provided in Appendix B, except for the

Hadamard quadratic residue sequences. The cyclotomic cosets

are referenced by the period and multipliers of the

corresponding sequences. The cyclotomic cosets for the

Hadamard quadratic residue sequences are shown to have a

very structured form in a later section which precludes the

necessity of listing them explicitly.

D. CROSS-CORRELATION

The cross-correlation function C( T) is evaluated for

the uniform cyclic difference set sequences in the sample.

In nearly all of the cases, only the number of values

assumed by C(T ) is described. In the special cases

involving the cross-correlations of equivalent quadratic

residue sequences, the actual values assumed by C(T) are

also included.

There are two major types of cross-correlations that are

evaluated. One type pertains to the cross-correlation of

equivalent sequences and the other pertains to the cross-

correlation of inequivalent sequences. A pair of cyclic

difference set sequences (ak) and (bk) are inequivalent if

one is not a cyclically shifted decimation of the other,

i.e., (ak) 3 {bqk+T). These two types of cross-correlations

are treated separately. The cross-correlations involving

equivalent Hadamard quadratic residue sequences are treated

as a special category.
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1. Eauivalent Sequences

A set of cyclically distinct, equivalent sequences

are derived for each cyclic difference set sequence in the

sample. This is accomplished by properly decimating each of

the sample sequences as discussed in Section IV.B. The

original cyclic -difference set sequence from the sample is

then cross-correlated with each of its equivalent

decimations.

2. Inequivalent Sequences

There are only 19 cyclic difference set sequences

from the sample for which cross-correlations between

inequivalent uniform sequences are possible. In order to

evaluate a cross-correlation of uniform inequivalent cyclic

difference set sequences, at least two uniform inequivalent

sequences are required. Consequently, all the cyclic

difference set sequences having a unique period in the

sample are excluded from consideration. This leaves 19

inequivalent cyclic difference set sequences for the

investigation. Table IV.2 provides the number of sequences

having each of the indicated periods which appear among the

19 cyclic difference set sequences.

There are 3 inequivalent sequences in the sample

having a period of 31. Hence, there are 3 possible

combinations of these particular inequivalent sequences

which can be cross-correlated. The total number of possible

cross-correlations involving uniform inequivalent sequences
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TABLE IV.2

PERIOD DISTRIBUTION OF INEQUIVALENT SEQUENCES

Period No. of Seauences

31 3
43 2
63 2
12-3 4
127 6
133 2

from this sample is 27, as determined by Table IV.2. All 27

cross-correlations are evaluated in this investigation.

3. M-Sequences

The M-sequences having periods 15, 31, 63, and 127

are each represented in the sample by an equivalent binary

complement. Every M-sequence of period v can be obtained by

a suitable decimation of any M-sequence of period v by

Corollary 111.2. Therefore, properly decimating a

particular binary complement of an M-sequence results in a

sequence which is the binary complement of another

cyclically distinct M-sequence.

The sequences generated from the following cyclic

difference sets are binary complements of the M-sequences

which have the indicated characteristic polynomial c(x):

(15,7,3) S3,TP c(x) = x4 -x-i

(31A,15,7) S4,H c(x) = x 5 -x 3 -1
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(63A,31,15) S5 c(x) = x6 -x-l

(127C,63,31) S6 c(x) = x7 -x 5 -x2 -x-l

The corresponding complementary cyclic difference sets have

parameters (v,k,X):

(15,8,4)

(31,16,8)

(63,32,16)

(127,64,32)

which are of the form (2n-l,2n-1,2n-2). These parameters

coincide with the parameters of the cyclic difference sets

associated with M-sequences as noted in Section II.B.

Proper decimations of each previously listed

"complementary" M-sequence result in binary complements of

all the respective M-sequences for a given period. For

example, in the case of the cyclic difference set

D = (0,1,2,4,5,8,10) (v,k,x) = (15,7,3)

the associated cyclic difference set sequence is

(Sk) = 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0.
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The sequence (sk) is the complementary sequence of the M-

sequence

{Sk) = 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

defined by the characteristic polynomial

c(x) = X4 -x-l.

If the 7 th decimation of {Sk) is formed

(S7k) = 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1,

it is the complementary sequence of the only other

cyclically distinct M-sequence of period 15

(S7k} = 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0,

defined by the characteristic polynomial

C(X) = X4 -x 3 -1.

As stated previously in Section IV.A, only one

sequence from a complementary pair need be considered in the

investigation of the cross-correlation functions of uniform

cyclic difference set sequences. Therefore, it is not
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necessary to include the cross-correlations of the actual 14-
sequences themselves having the aforemertioned periods.
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V. RESULTS

A. REMARKS

The scope of this thesis is essentially limited in most

cases to investigating the number of values assumed by the

cross-correlation function of uniform cyclic difference set

sequences. In the special cases involving the cross-

correlations of quadratic residue sequences, the actual

values taken on by C(T) are also considered. The general

observations and results are presented separately for each

type of cross-correlation.

B. CROSS-CORRELATION OF INEQUIVALENT SEQUENCES

The number of values assumed by the cross-correlation

functions of inequivalent cyclic difference set sequences

are provided in a condensed format in Appendix C. Since the

sequences are inequivalent they do not necessarily have the

same multipliers or the same number of cyclotomic cosets.

Therefore, the number of cyclotomic cosets is provided for

each inequivalent sequence as determined by their respective

multipliers listed in Table IV.l.

The cross-correlations of inequivalent sequences are

observed to take on 3 values in only 2 cases and a maximum

number of 11 values in 5 cases as listed in Appendix C. The

average number of values assumed for these 27 cross-

correlations is approximately 8. There are no apparent
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regularities discernible to the author among these

inequivalent cross-correlations.

C. CROSS-CORRELATION OF EQUIVALENT SEQUENCES

The number of values taken on by the cross-correlation

functions of equivalent cyclic difference set sequences are

provided in a condensed format in Appendix D. The original

sequence from the sample, {Sk), is cross-correlated with

each of its proper decimations, {Sqk). The number of

cyclotomic cosets is given for {Sk) as determined by its

multipliers listed in Table IV.l.

The number of values assumed by the cross-correlations

of equivalent cyclic difference set sequences are observed

not to exceed the number of cyclotomic cosets in all cases.

Theorem 111.6 states that the number of distinct values

assumed by the cross-correlation function of two M-

sequences, both of period v, can never exceed the number of

cyclotomic cosets, modulo v. This theorem applies in

general to equivalent cyclic difference set sequences. The

following modified version of Theorem 111.6 is presented for

this general case.

Theorem V.1

The number of distinct values assumed by the cross-

correlation function C( T) of two equivalent cyclic

difference set sequences, (ak} and (bk), uniform with a
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period of v, can never exceed the number of cyc3otomic

cosets, modulo v.

Proof:

The proof of Theorem V.1 is identical to the proof

of Theorem 111.6. Since {ak} and (bk) are equivalent

cyclic difference set sequences

{aqk) = (bk)

for some q, with (q,v) = 1. Without loss of, generality

let (ak) and (bk} be in their characteristic shifts.

The cross-correlation function of {ak) and {bk) is

v v

C(T) = akbk+ = akaqk+T .
k=l k=l

By the formula of Gauss for the multiplication of

cyclotomic cosets, C(T) depends only on the coset to

which T belongs. Therefore the number of different values

assumed by C(t) can not exceed the number of cyclotomic

cosets, modulo v.

It is not uncommon for the cross-correlation function of

equivalent cyclic difference set sequences to assume exactly

3 values as seen in several cases presented in Appendix D.

However, it is not clear when the cross-correlation between

equivalent cyclic difference set sequences will take on any
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particular number of values except in the cases involving M-

sequences as noted in Section III.G. Finally, we observe

that the number of values assumed by the cross-correlation

of equivalent cyclic difference set sequences never appears

to approach the upper bound set by Theorem V.1 unless one

sequence is the reverse of the other.

D. CROSS-CORRELATION OF EQUIVALENT QUADRATIC RESIDUE

SEQUENCES

There are 16 quadratic residue sequences in the sample

identified as follows:

(7,3,1) (11,5,2) (19,9,4) (23,11,5)

(31B,15,7) (43B,21,10) (47,23,11) (59,29,14)

(67,33,16) (71,35,17) (79,39,19) (83,41,20)

(103,51,25) (107,53,26) (127A,63,31) (131,65,32).

Clearly, all of these sequences are of the Hadamard type

having parameters (4t-l,2t-l,t-1).

The quadratic residue sequences have a multiplier group

composed of the quadratic residues, modulo v, and each

sequence has exactly 3 cyclotomic cosets. The first coset

contains the single element 0, the second coset contains the

2t-1 quadratic residues, modulo v, and the third coset

contains the remaining 2t-1 quadratic non-residues, modulo

V.
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Consequently, only 1 cyclically distinct equivalent

sequence exists for each of the quadratic residue sequences

in the sample. The equivalent sequence is obtained by

decimating the quadratic residue sequence (Sk} by q, a

quadratic non-residue, modulo v. Furthermore, (Sk) and

{Sqkj are observed to be reverse sequences.

The cross-correlations of {Sk} with {Sqk) assume 3

values in all the observed cases and

-1 occurs 2t-1 times,

3 occurs 2t-1 times and

-(4t-3) occurs 1 time.

For example, in the case of the sequence {Sk) identified by

its parameters (23,11,5), the equivalent sequence (s5k} is

obtained by decimating (sk) by 5 which is a quadratic non-

residue, modulo 23. The cross-correlation of {Sk) with

(s5k) takes on 3 values and

-l occurs 11 times,

3 occurs 11 times and

-21 occurs 1 time.

This cross-correlation function shows there is a

particular cyclic shift of (sk) for which a strong negrtive

cross-correlation exists between {Sk) and (Sqk}. The strong
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negative cross-correlation indicates that this particular

cyclic shift of (sk ) is nearly the binary complement of

(Sqk). In fact, {sk) and (SqkI agree in only one position.

The observed cross-correlation functions of equivalent

quadratic residue sequences suggest the following

conjecture.

Conjecture V.2

Let (Sk) be a cyclic difference set sequence

generated from a quadratic residue set with parameters v

= 4t-l, k = 2t-l, and A = t-1 such that v is prime.

If (Sqk} is an equivalent decimation of {Sk) by a

quadratic non-residue q, modulo v, then the cross-

correlation function C(T) of (Sk) and {Sqk ) is 3 valued

and

-1 occurs 2t-1 times,

3 occurs 2t-1 times and

-(4t-3) occurs 1 time.

Furthermore, let Q be the set of quadratic

residues, modulo v, and let N be the set of

quadratic non- residues, modulo v. If C(T) = -(4t-3)

for some fixed shift T * then
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- if T N and T / 0 (mod v)

C*3 if T Q

-(4t-3) if T E 0 (rod v).

Each quadratic residue sequence in the sample is

observed to have 3 cyclotomic cosets, namely the single

element 0, the quadratic residues, modulo v, and the

quadratic non-residues, modulo v. In order to obtain

exactly 3 cosets a "proper" multiplier must be chosen.

The multipliers of a quadratic residue cyclic difference

set are the quadratic residues themselves by Theorem 11.3.

For the case v = 127, if the multiplier 2 (162 H 2 mod 127)

is selected, then the corresponding multiplier group is

G = (1,2,4,8,16,32,64).

which clearly does not contain all the quadratic residues,

modulo 127. For this example G generates a total of 19

cyclotomic cosets. If on the other hand, the quadratic

residue 9 is chosen as the generator of the multiplier

group, then G contains all the quadratic residues, modulo

127, and there are a total of 3 cyclotomic cosets.

Theorem V.1 indicates that the number of values taken on

by the cross-correlation function of the equivalent

quadratic residue sequences in the sample can not exceed 3,

as observed in all cases. The following theorem shows that
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the cross-correlation function of equivalent quadratic

residue sequences never assumes more than three values.

Theorem V.3

Let (Sk) be a Hadamard quadratic residue sequence

with parameters v = 4t-l, k = 2t-1 and X = t-1 such that

v is prime. If (Sdk) is a decimation of (Sk) by a

quadratic non-residue d, then the cross-correlation

function of {Sk) and {Sdk) takes on a maximum of 3

values.

Proof:

If v = 4t-1 is prime then the residues, modulo v,

constitute a finite field. Therefore, the

multiplicative group of the nonzero residues, modulo v,

is cyclic.

Consider the set Q of all quadratic residues,

modulo v. Clearly, 1 is an element of Q so that Q is

non-empty. If ql,q 2 E Q, then for some non-zero residues

x, and x2 , modulo v,

q, H x1 2  (mod v)

q2E x2
2  (mod v)

Hence,
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ql'q2 S X12.x22  (mod v)

= (x 1 .x 2 ) 2  (mod v)

and (ql.q2 ) E Q- Since the quadratic residues are closed

under multiplication, they necessarily form a subgroup

of the multiplicative group of non-zero residues, modulo

v. Every subgroup of a cyclic group is cyclic therefore

Q is cyclic and Q = <q> for some q EQ.

By Theorem 11.3, the multipliers of a quadratic

residue set are the quadratic residues themselves. Let

the multiplier group G - Q be generated by the

multiplier qE Q such that

G = Q = (q,q2 q3 ... q2t-2,q 2 t-l) (mod v).

Clearly, Q is one particular cyclotomic coset, modulo v.

The other cyclotomic cosets are constructed by forming

the products xQ (mod v) where x is a quadratic non-

residue, modulo v. In the trivial case where x = 0, the

cyclotomic coset contains only the single element 0. We

now show that the only remaining cyclotomic coset

contains all the non-zero quadratic non-residues, modulo

V.

Let x be a non-zero quadratic non-residue, modulo

v, and consider

69



N = XQ = (xq,xq2,xq 3
1...,xq2t 2 ,xq 2t-1) (mod V).

Suppose INI < 2t-1, then

xq' = xq) (mod V) for1 <i <ji < 2t-1

There fore,

xqi = kv+xqi ko5 Z

Icy = x(qj-qi)

since v is prime, either

(i) x =v and q-qi=Jk

or

(ii) x - kc and q)-qi = v must hold.

Case (i): If x - v then x =- 0 (mod v) so that xcQ =(0)

which has been previously discussed and is not under

consideration.

Case (ii): If qj..qi - v then q) qi (mod v) which is

clearly a contradiction. Hence, the 4t-1 residues,

modulo v, have been accounted for in exactly 3

cyclotomic cosets as follows:
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Co = (0)

C1  {q,q2,q3,...,q2t-2,q2t-l) (mod v)

C2  (xq,xq2 ,xq3 ,...,xq2t 2 ,)xq2tl (mod v)

where q is a quadratic residue such that Q = <q> and x

is a non-zero quadratic non-residue, modulo v.

Therefore, the cross-correlation function of equivalent

Hadamard quadratic residue sets can not assume more than

3 values by Theorem V.1.

It is not clear to the author why the cross-correlation

functions of equivalent quadratic residue sequences assume

the 3 particular observed values.
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VI. CONCLUSIONS

The maximum number of values assumed by the cross-

correlation function of equivalent cyclic difference set

sequences is shQwn to be bounded. This upper bound is the

number of cyclotomic cosets, modulo v, for uniform

equivalent cyclic difference set sequences having a period

of v. In certain special cases involving M-sequences, the

cross-correlation function is known to take on three and

four explicit values with stipulated frequencies of

occurrence, as given by existing theorems.

The cross-correlation of equivalent Hadamard quadratic

residue sequences is conjectured to take on three specified

values. In each cross-correlation involving equivalent

Hadamard quadratic residue sequences having the associated

parameters v = 4t-l, k = 2t-l, and X = t-l, it is observed

that

-1 occurs 2t-1 times,

3 occurs 2t-1 times and

-(4t-3) occurs 1 time.

In partial support of the conjecture, it is shown that the

number of values assumed by the cross-correlation of
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equivalent Hadamard quadratic residue sequences can not

exceed three.

The cross-correlations of the uniform inequivalent

cyclic difference set sequences assume three values in two

separate cases however no distinguishing characteristics are

derived by the 4uthor from the relatively small sample. It

should be mentioned that other inequivalent cross-

correlations are possible from the set of 19 inequivalent

sequences considered in this investigation. These

additional cross-correlations involve properly decimated

versions of the 19 inequivalent sequences and may

demonstrate some regularities which are not evident in this

sample.
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APPENDIX A

SAMPLE CYCLIC DIFFERENCE SETS

(v.k.Xl Sean Cyclic Difference Set

(7,3,1) 3 1, 2, 4

(11,5,2) 5 1, 3, 4, 5, 9

(15,7,3) 4 0, 1, 2, 4, 5, 8, 10

(19,9,4) 5 1, 4, 5, 6, 7, 9, 11,1 6, 17

(21,5,1) 9 3, 6, 7, 12, 14

(23,11,5) 7 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18

(31,6,1) 12 1, 5, 11, 24, 25, 27

(31A,15,7) 5 1, 2, 3, 4, 6, 8, 12, 15, 16, 17
23, 24, 27, 29, 30

(31B,15,7) 7 1, 2, 4, 5, 7, 8, 9, 10, 14, 16, 18
19, 20, 25, 28

(35,17,8) a 0, 1, 3, 4, 7, 9, 11, 12, 13, 14, 16
17, 21, 27, 28, 29, 33

(40,13,4) 10 1, 2, 3, 5, 6, 9, 14, 15, 18, 20, 25
27, 35

(43A,21,10) 8 1, 2, 3, 4, 5, 8, 11, 12, 16, 19, 20
21, 22, 27, 32, 33, 35, 37, 39, 41
42

(43B,21,10) 7 1, 4, 6, 9, 10, 11, 13, 14, 15, 16
17, 21, 23, 24, 25, 31, 35, 36, 38
40, 41

(57,8,1) 18 1, 6, 7, 9, 19, 38, 42, 49

(47,23,11) 9 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16
17, 18, 21, 24, 25, 27, 28, 32, 34
36, 37, 42
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(vjk.X) Span Cyclic Difference Set
(59,29,14) 9 1, 3, 4, 5, 7, 9, 12, 15, 16, 17, 19

20, 21, 22, 25, 26, 27, 28, 29, 35
36, 41, 45, 46, 48, 49, 51, 53, 57

(63A,31,15) 6 0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13
14, 16, 18, 19, 24, 26, 27, 28, 32
33, 35, 36, 38, 41, 45, 48, 49, 52
54, 56

(63B,31,15) .11 0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12
16, 17, 18, 20, 23, 24, 27, 29, 32
33, 34, 36, 40, 43, 45, 46, 48, 53
54, 58

(67,33,16) 8 1, 4, 6, 9, 10, 14, 15, 16, 17, 19
21, 22, 23, 24, 25, 26, 29, 33, 35
36, 37, 39, 40, 47, 49, 54, 55, 56
59, 60, 62, 64, 65

(71,35,17) 10 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15
16, 18, 19, 20, 24, 25, 27, 29, 30
32, 36, 37, 38, 40, 43, 45, 48, 49
50, 54, 57, 58, 60, 64

(79,39,19) 10 1, 2, 4, 5, 8, 9, 10, 11, 13, 16, 18
19, 20, 21, 22, 23, 25, 26, 31, 32
36, 38, 40, 42, 44, 45, 46, 49, 50
51, 52, 55, 62, 64, 65, 67, 72, 73
76

(83,41,20) 11 1, 3, 4, 7, 9, 10, 11, 12, 16, 17
21, 23, 25, 26, 27, 28, 29, 30, 31
33, 36, 37, 38, 40, 41, 44, 48, 49
51, 59, 61, 63, 64, 65, 68, 69, 70
75, 77, 78, 81

(85,21,5) 16 0, 1, 2, 4, 7, 8, 14, 16, 17, 23, 27
28, 32, 34, 43, 46, 51, 54, 56, 64
68

(91,10,1) 25 0, 1, 3, 9, 27, 49, 56, 61, 77, 81

(103,51,25) 11 1, 2, 4, 7, 8, 9, 13, 14, 15, 16, 17
18, 19, 23, 25, 26, 28, 29, 30, 32
33, 34, 36, 38, 41, 46, 49, 50, 52
55, 56, 58, 59, 60, 61, 63, 64, 66
68, 68, 72, 76, 79, 81, 82, 83, 91
92, 93, 97, 98, 100
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(v.k.X) Span Cyclic Difference Set
(107,53,26) 11 1, 3, 4, 9, 10, 11, 12, 13, 14, 16

19, 23, 25, 27, 29, 30, 33, 34, 35
36, 37, 39, 40, 41, 42, 44, 47, 48
49, 52, 53, 56, 57, 61, 62, 64, 69
75, 76, 79, 81, 83, 85, 86, 87, 89
90, 92, 99, 100, 101, 102, 105

(121A,40,13) 13 1, 3, 4, 7, 9, 11, 12, 13, 21, 25
27, 33, 34, 36, 39, 44, 55, 63, 64
67, 68, 70, 71, 75, 80, 81, 82, 83
85, 89, 92, 99, 102, 103, 104, 108
109, 115, 117, 119

(121B,40,13) 12 1, 3, 4, 5, 9, 12, 13, 14, 15, 16
17, 22, 23, 27, 32, 34, 36, 39, 42
45, 46, 48, 51, 64, 66, 69, 71, 77
81, 82, 85, 86, 88, 92, 96, 102, 108
109, 110, 117

(121C,40,13) 14 1, 3, 4, 7, 8, 9, 12, :1, 24, 25, 26
27, 34, 36, 40, 43, 49, 63, 64, 68
70, 71, 72, 75, 78, 81, 82, 83, 89
92, 94, 95, 97, 102, 104, 108, 112
113, 118, 120

(121D,40,13) 15 1, 3, 4, 5, 7, 9, 12, 14, 15, 17, 21
27, 32, 36, 38, 42, 45, 46, 51, 53
58, 63, 67, 68, 76, 79, 80, 81, 82
83, 96, 100, 103, 106, 107, 108, 114
115, 116, 119

(127A,63,31) 15 1, 2, 4, 8, 9, 11, 13, 15, 16, 17
18, 19, 21, 22, 25, 26, 30, 31, 32
34, 35, 36, 37, 38, 41, 42, 44, 47
49, 50, 52, 60, 61, 62, 64, 68, 69
70, 71, 72, 73, 74, 76, 79, 81, 82
84, 87, 88, 94, 98, 99, 100, 103
104, 107, 113, 115, 117, 120, 121
122, 124

(127B,63,31) 11 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14
16, 19, 20, 23, 24, 25, 27, 28, 32
33, 38, 40, 46, 47, 48, 50, 51, 54
56, 57, 61, 63, 64, 65, 66, 67, 73
75, 76, 77, 80, 87, 89, 92, 94, 95
96, 97, 100, 101, 102, 107, 108, 111
112, 114, 117, 119, 122, 123, 125
126
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Span Cyclic Difference Set
(127C,63,31) 7 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 15

16, 17, 18, 24, 27, 28, 29, 30, 31
32, 34, 36, 39, 47, 48, 51, 54, 56
58, 60, 61, 62, 64, 65, 67, 68, 71
72, 77, 78, 79 83, 87, 89, 94, 96
97, 99, 102, 103, 105, 107, 108, 112
113, 115, 116, 117, 120, 121, 122, 124

(127D,63,31) 13 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14
16, 17, 18, 19, 24, 25, 26, 27, 28
31, 32, 34, 35, 36, 38, 47, 48, 50
51, 52, 54, 56, 61, 62, 64, 65, 67
68, 70, 72, 73, 76, 77, 79, 81, 87
89, 94, 96, 97, 100, 102, 103, 104
107, 108, 112, 115, 117, 121, 122, 124

(127E,63,31) 12 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15
16, 17, 18, 19, 20, 24, ", 27, 29
30, 32, 33, 34, 36, 38, 39, 40, 48
50, 51, 54, 55, 58, 59, 60, 64, 65
66, 68, 71, 72, 73, 76, 77, 78, 80
83, 89, 91, 93, 96, 99, 100, 102
105, 108, 109, 110, 113, 116, 118
120

(127F,63,31) 15 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 16
19, 20, 21, 22, 24, 25, 27, 29, 32
33, 37, 38, 39, 40, 41, 42, 44, 48
49, 50, 51, 54, 58, 63, 64, 65, 66
69, 73, 74, 76, 77, 78, 80, 82, 83
84, 88, 89, 95, 96, 98, 100, 102
105, 108, 111, 116, 119, 123, 125
126

(131,65,32) 11 1, 3, 4, 5, 7, 9, 11, 12, 13, 15, 16
20, 21, 25, 27, 28, 33, 34, 35, 36
38, 39, 41, 43, 44, 45, 46, 48, 49
52, 53, 55, 58, 59, 60, 61, 62, 63
64, 65, 74, 75, 77, 80, 81, 84, 89
91, 94, 99, 100, 101, 102, 105, 107
108, 109, 112, 113, 114, 117, 121
123, 125, 129

(133,12,1) 42 1, 11, 16, 40, 41, 43, 52, 60, 74
78, 121, 128

(133,33,8) 17 1, 4, 5, 14, 16, 19, 20, 21, 25, 38
54, 56, 57, 64, 66, 70, 76, 80, 83
84, 91, 93, 95, 98, 100, 101, 105
106, 114, 123, 125, 126, 131
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APPENDIX B

CYCLOTOMIC COSETS

Period: 15

Multiplier: 2

COSET

CO 
0C1  1, 2, 4, 8C2  3, 6, 12, 9C3  5, 10C4  7, 14, 13, 11

Period: 21

Multiplier: 2

CO 
0C1  1, 2, 4, 8, 16, 11C2  3, 6, 12C3  5, 10, 20, 19, 17, 13C4  7, 14C5  9, 18, 15

Period: 31

Multiplier: 2

COSET 
ELL

Co 
0Cl 
1, 2, 4, 8, 16C2  3, 6, 12, 24, 17C3  5, 10, 20, 9, 18C4  15, 30, 29, 27, 23C5  19, 7, 14, 28, 25C6  26, 21, 11, 22, 13
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Period: 35

Multiplier: 3

COSET ELEMENTS

C0  0
C1  1, 3, 9, 27, 11, 33, 29,

17, 16, 13, 4, 12
C2  2, 6, 18, 19, 22, 31, 23,

34, 32, 26, 8, 24
C3  5, 15, 45, 30, 20, 25
C4  7, 21, 28, 14

Period: 40
Multiplier: 3

COSET ELEMENTS

Co  0
C1  1, 3, 9, 27
C2  2, 6, 8, 14
C3  4, 12, 36, 28
C4  5, 15
C5  7, 21, 23, 29
C6  8, 24, 32, 16
C7  10, 30
C8  11, 33, 19, 17
C9  13, 39, 37, 31
C1 0  20
C1 1  22, 26, 38, 34
C12  25, 35

Period: 43
Multiplier: 11

COSET ELEMENTS

Co 0
C1  1, 11, 35, 41, 21, 16, 4
C2  2, 22, 27, 39, 42, 32, 8
C3  3, 33, 19, 37, 20, 5, 12
C4  6, 23, 38, 31, 40, 10, 24
C5  7, 34, 30, 29, 18, 26, 28
C6  9, 13, 14, 25, 17, 15, 36
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Period: 57
Multiplier: 7

CO 0
C1  1, 7, 49C2  2, 14, 41
C3  3, 21, 33C4  4, 28, 25C 5  - 5, 35, 17C6  6, 42, 9C7  8, 56, 50C8  10, 13, 34C9 11, 20, 26CIO 12, 27, 18
C11 15, 48, 51
C12 16, 55, 43
C1 3  19
C1 4  22, 40, 52C1 5  23, 47, 44C1 6  24, 54, 36C1 7  29, 32, 53C18  30, 39, 45C19  31, 46, 37
C2 0  38

Period: 63

Multiplier: 2

Coo
C 0  0C1  1, 2, 4, 8, 16, 32C2  3, 6, 12, 24, 48, 33C3  5, 10, 20, 40, 17, 34C4  7, 14, 28, 56, 49, 35C5  9, 18, 36C6  11, 22, 44, 25, 50, 37C7  13, 26, 52, 41, 19, 38C8  15, 30, 60, 57, 51, 39C9  21, 42C10  23, 46, 29, 58, 53, 43C1l 27, 54, 45C1 2  31, 62, 61, 59, 55, 47
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Period: 85
Multiplier: 2

COSET ELEMENTS

C0  0
C1  1, 2, 4, 8, 16, 32, 64, 43
C2  3, 6, 12, 24, 48, 11, 22,

44
C3  5, 10, 20, 40, 80, 75, 65,

45
C4  7, 14, 28, 56, 27, 54, 23,

46
C5  9, 18, 36, 72, 59, 33, 66,

47
C6  13, 26, 52, 19, 38, 76,

67, 49
C7  15, 30, 60, 35, 70, 55,

25, 50
C8  17, 34, 68, 51
C9  21, 42, 84, 83, 81, 77,

69, 53
C1 0  29, 58, 31, 62, 39, 78,

71, 57
C1 1  37, 74, 63, 41, 82, 79,

73, 61

Period: 91
Multiplier: 3

COSET ELEMENTS

CO  0
C1  1, 3, 9, 27, 81, 61
C2  2, 6, 18, 54, 71, 31
C3  4, 12, 36, 17, 51, 62
C4  5, 15, 45, 44, 41, 32
C5  7, 21, 63
C6  8, 24, 72, 34, 11, 33
C7  10, 30, 90, 88, 82, 64
C8  13, 39, 26, 78, 52, 65
C9  14, 42, 35
C1 0  16, 48, 53, 68, 22, 66
CII 19, 57, 80, 58, 83, 67
C1 2  20, 60, 89, 85, 73, 37
C1 3  23, 69, 25, 75, 43, 38
C1 4  28, 84, 70, 28, 84, 70
C1 5  29, 87, 79, 55, 74, 40
C16  46, 47, 50, 59, 86, 76
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Period: 121

Multiplier: 3

COSET ELEMENTS

Co  0
C1  1, 3, 9, 27, 81
C2  2, 6, 18, 54, 41
C3  4, 12, 36, 108, 82
C4  5, 15, 45, 14, 42
C5  7, 21, 63, 68, 83
C6  8, 24, 72, 95, 43
C7  10, 30, 90, 28, 84
C8  11, 33, 99, 55, 44
C9  13, 39, 117, 109, 85
Clo 16, 48, 23, 69, 86
C1 1  17, 51, 32, 96, 46
C12  19, 57, 50, 29, 87
C13  20, 60, 59, 56, 47
C14  22, 66, 77, 110, 88
C15  25, 75, 104, 70, 89
C16  26, 78, 113, 97, 49
C17  31, 93, 37, 111, 91
C18  34, 102, 64, 71, 92
C19  35, 105, 73, 98, 52
C2 0  38, 114, 100, 58, 53
C2 1  40, 120, 118, 112, 94
C2 2  61, 62, 65, 74, 101
C2 3  67, 80, 119, 115, 103
C2 4  76, 107, 79, 116, 106

Period: 127

Multiplier: 2

COSET ELEMENTS

C0  0
C1  1, 2, 4, 8, 16, 32, 64
C2  3, 6, 12, 24, 48, 96, 65
C3  5, 10, 20, 40, 80, 33, 66
C4  7, 14, 28, 56, 112, 97, 67
C5  9, 18, 36, 72, 17, 34, 68
C6  11, 22, 44, 88, 49, 98, 69
C7  13, 26, 52, 104, 81, 35,

70
C8  15, 30, 60, 120, 113, 99,

71
C9  19, 38, 76, 25, 50, 100,

73
Ci0  21, 42, 84, 41, 82, 37, 74
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Ci1  23, 46, 92, 57, 114, 101,
75

C1 2  27, 54, 108, 89, 51, 102,
77

C1 3  29, 58, 116, 105, 83, 39,
78

C1 4  31, 62, 124, 121, 115,
103, 79

C1 5  43, 86, 45, 90, 53, 106,
85

C1 6  47, 94, 61, 122, 117, 107,
87

C1 7  55, 110, 93, 59, 118, 109,
91

C1 8  63, 126, 125, 123, 119,
111, 95

Period: 133

Multiplier: 5

COSET ELEMENTS

CO  0
C1  1, 5, 25, 125, 93, 66, 64,

54, 4, 20, 100, 101, 106,
131, 123, 83, 16, 80

C2  2, 10, 50, 117, 53, 132,
128, 108, 8, 40, 67, 69,
79, 129, 113, 33, 32, 27

C3  3, 15, 75, 109, 13, 65, 59
29, 12, 60, 34, 37, 52,
127, 103, 116, 48, 107

C4  6, 30, 17, 85, 26, 130,
118, 58, 24, 120, 68, 74,
104, 121, 73, 99, 96, 81

C5  7, 35, 42, 77, 119, 63, 49
112, 28

C6  9, 45, 92, 61, 39, 62, 44,
87, 36, 47, 102, 111, 23,
115, 43, 82, 11, 55

C7  14, 70, 84, 21, 105, 126,
98, 91, 56

C8  18, 40, 51, 122, 78, 124,
88, 41, 72, 94, 71, 89,
46, 97, 86, 31, 22, 110

C9  19, 95, 76, 114, 38, 57

83



Period: 133
Multiplier: 11

CO 
0C1  1, 11, 21C2  2, 22, 109C3  3, 33, 97C4  4, 44, 85C5  5, 55, 73C6  6, 66, 61C7  7, 77, 49C8  8, 88, 37C9  9, 99, 25C1 0  10, 110, 13CII 
12, 132, 122C1 2  14, 21, 98C1 3  15, 32, 86C14  16, 43, 74C1 5  17, 54, 62C1 6  18, 65, 50C1 7  19, 76, 38C1 8  20, 87, 26C1 9  23, 120, 123

C20 24, 131, 111C2 1  27, 31, 75C2 2  28, 42, 63C2 3  29, 53, 51C2 4  30, 64, 39C2 5  34, 108, 124C2 6  35, 119, 112C2 7  36, 130, 100C2 8  40, 41, 52C2 9  45, 96, 125C3 0  46, 107, 113C3 1  47, 118, 101C3 2  48, 129, 89C3 3  56, 84, 126C3 4  57, 95, 114C3 5  58, 106, 102C3 6  59, 117, 90C3 7  60, 128, 78C38  67, 72, 127C3 9  68, 83, 115C4 0  69, 94, 103C4 1  70, 105, 91C4 2  71, 116, 79C4 3  80, 82, 104C4 4  81, 93, 92
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APPENDIX C

INEOUIVALENT CROSS-CORRELATIONS

(v.k.X) No. of Cosets No. of Values for C(T)

(31,6,1) 11 6
(31A,15,7) 7

(31,6,1) 11 5
(31B,15,7) 3

(31A,15,7) 7 3
(31B,15,7) 3

(43A,21,10) 7 6
(43B,21,10) 3

(63A,31,15) 13 4
(63B,31,15) 13

(121A,40,13) 25 10
(121B,40,13) 25

(121A,40,13) 25 5
(121C,40,13) 25

(121A,40,13) 25 10
(121D,40,13) 25

(121B,40,13) 25 9
(121C,40,13) 25

(121B,40,13) 25 10
(121D,40,13) 25

(121C,40,13) 25 10
(121D,40,13) 25

(127A,63,31) 3 6
(127B,63,31) 19

(127A,63,31) 3 5
(127C,63,31) 19

(127A,63,31) 3 9
(127D,63,31) 19
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(V.k.X) No. of Cosets No. of Values for C(Tl

(127A,63,31) 3 9
(127E,63,31) 19

(127A,63,31) 3 9
(127F,63,31) 19

(127B,63,31) 19 3
(127C,63,31) 19

(127B,63,31) 19 11
(127D,63,31) 19

(127B,63,31) 19 6
(127E,63,31) 19

(127B,63,31) 19 10
(127F,63,31) 19

(127C,63,31) 19 10
(127D,63,31) 19

(127C,63,31) 19 9
(127E,63,331) 19

(127C,63,31) 19 11
(127F,63,31) 19

(127D,63,31) 19 11
(127E,63,31) 19

(127D,63,31) 19 11
(127F,63,31) 19

(127E,63,31) 19 11
(127F,63,31) 19

(133,12,1) 44 8
(133,33,8) 9
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APPENDIX D

EQUIVALENT CROSS-CORRELATIONS

(v.k.X) No. of Cosets ral !cI(T)

(15,7,3) 5 7 4

(21,5,1) 6 5 3

(31,6,1) 11 2 3
3 4
4 4
6 3
8 4
11 4
12 4
16 3
17 4

(31A,15,7) 7 3 3
9 3
27 6
19 3
26 3

(35,17,s) 5 2 5

(40,13,4) 13 7 7
11 6
13 6

(43A,21,10) 7 2 6
3 6
6 6
7 6
9 6

(57,8,11) 21 2 3
4 5
5 5
8 3
10 4
11 5
16 5
22 4
23 5
24 4
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(V-k. ) No. of Comets (%I- r JgC(

29 3

30 3

(63A,31,15) 13 5 3
11 5
13 3
23 5
31 8

(63B,31,15) 13 5 7
3.1 5
13 7
23 5
31 8

(85,21,5) 12 3 4

7 7
9 4
13 4
21 6
29 4

37 7(91,10,1) 17 2 3

4 4
5 4
8 4
10 3
16 5
19 4
20 4
23 4
29 5
46 3

(121A,40,13) 25 2 3

4 3
5 3
7 5
10 3
13 3
16 11
17 5
19 5
20 11
25 5
26 3

31 3
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(v.k. ) No. of Cosets -- qkL r '] C(T )
34 5
35 5
38 ii
40 11
61 3
67 11

(121A,40,13) 25 76 11

(121B,40,13) 25 2 10
4 10
5 107 11

8 4
10 5
13 5
16 10
17 9
19 9
20 10
25 10
26 10
31 10
34 10
35 11
38 10
40 10
61 

10
67 1076 4

(121C,40,13) 25 2 7

4 35 10
7 10
8 7
10 7
13 7
16 10
17 7
19 7
20 3
25 4
26 10
31 3
34 4
35 10
38 10
40 9
61 7
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No-, Of Cosqets ral-L -- L(ITi:

67 3

76 7
(121D, 40, 13) 25 2 9

4 10
5 8
7 10
8 10
10 9
13 9
16 10
17 11
19 11
20 10
25 10
26 8
31 10
34 10
35 10
38 10
40 10
61 9
67 10
76 10

(127B,63,31) 19 3 6
5 7
7 6
9 6
11 6
13 6
15 6
21 6
23 6
27 7
29 6
31 6
43 6
55 6
63 7
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(v.k.kA No. of Cosets tSqkl C01 C(Tral

(127C,63,31) 19 3 3

5 3
7 7
9 311 3
13 3
15 3
19 7
21 7
23 3
27 3
29 3
31 7
43 3
47 7
55 7
63 II

(127D,63,31) 19 3 14
5 12
7 14
9 13
11 14
13 14
15 13
19 14
21 13
23 13

27 13
29 14
31 14
43 13
47 14
55 14
63 14

(127E,63,31) 19 3 6
5 8
7 8
9 9
11 10
13 10
15 9
19 7
21 9
23 10
27 9
29 10
31 9
43 6
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(Vk. o. of Cosets sqkri JJ -C JT

47 7
55 9(127E,63,31) 19 63 10

(127F,63,31) 19 3 6

5 5
7 9

S9 711 6
13 6
15 7
19 5
21 7
23 10
27 5
29 10
31 7
43 6

47 5

63 10
(133,33,8) 10 2 7

3 4
6 8
9 8
18 5

(133,12,1) 45 2 3

3 4
4 5
5 5
6 5
8 4
9 4
10 4
11 3
13 5
14 4
15 4
16 4
18 4
19 4
20 5
21 5
23 5
24 5
25 5
27 5
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(v.k. N) No. of Cosets Sqk) ralCIi

28 4
29 4
30 5
31 4
32 4

(133,12,1) 45 35 5
36 5

37 5

40 5
42 5

43 5
44 4
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